added more examples

This commit is contained in:
Ari Brown 2024-07-03 11:04:11 -04:00
parent a3374fd85c
commit 745919e587
3 changed files with 138 additions and 0 deletions

View file

@ -0,0 +1,35 @@
import minerva
import pprint
pp = pprint.PrettyPrinter(indent=4)
# Create the Minerva object which gives you access to the account under the
# profile `hay`
m = minerva.Minerva("hay")
# Get the Athena object
athena = m.athena("s3://haystac-pmo-athena/")
# Parallelize across the `data` and split it into `n` chunks, one chunk per process.
# Since `num_agents` is a number, it's turned into a range and then split.
num_agents = 10000
parallel = athena.parallelize("trajectories", n = 200, data = num_agents)
for agents in parallel:
# Everything *needs* to have a column in order for unloading to parquet to work,
# so scalar values have to be assigned something, so here we use `as count` to
# create a temporary column called `count`
sql = f"""
select count(*) as cnt
from trajectories.basline
where agent >= {min(agents)} and
agent < {max(agents)}
group by agent
"""
parallel << athena.query(query, partition = {"agent": agents})
pp.pprint(parallel.results().head(10))
# We also get important statistics
print(parallel.runtime)
print(parallel.cost)

86
examples/repartition.py Normal file
View file

@ -0,0 +1,86 @@
import minerva as m
import servers as s
import json
import math
import sys
src_top_level = "s3://phase1.trial2/ta1.kitware/te.apl/transforms/plain/"
dst_top_level = "s3://phase1.trial2/ta1.kitware/te.apl/transforms/ari_sorted/"
def sort_hour(mach, hour):
image = "436820952613.dkr.ecr.us-east-1.amazonaws.com/apl-pyarrow-experiment"
# Prep the info for the docker container
srted_loc = src_top_level + '/'.join(hour.split('/')[-4:])
srted_loc += "/data.zstd.parquet"
variables = {"source": hour, # hour
"destination": srted_loc } # precise location of new file
# Create the machine to run it
dock = m.Docker(machine = mach,
container = image,
variables = {"PAYLOAD": json.dumps(variables)},
stdout = sys.stdout,
stderr = sys.stderr)
dock.run()
def repartition(mach, agents):
image = "436820952613.dkr.ecr.us-east-1.amazonaws.com/apl-pyarrow-experiment-agent"
# Prep the info for the docker container
variables = {"min_agent": min(agents),
"max_agent": max(agents),
"source": src_top_level,
"destination": dst_top_level,
"secondary_destination": None}
# Create the machine to run it
dock = m.Docker(machine = mach,
container = image,
variables = {"PAYLOAD": json.dumps(variables)},
stdout = sys.stdout,
stderr = sys.stderr)
dock.run()
#####################################
# Prep the work
# Find out how many hours there are in the dataset
pool_size = 1
objs = s.m.s3.ls(src_top_level + "year=")
hours = set(["s3://" + '/'.join([o.bucket_name, *o.key.split("/")[0:-1]])
for o in objs])
print(f"{len(hours)} hours to sort")
hours = sorted(hours)
hours = [hours[0]]
# Split the agents into chunks for each machine in the pool
agents = list(range(200))
size = math.ceil(len(agents) / pool_size)
groups = [agents[i:i + size] for i in range(0, len(agents), size)]
try:
#######################################
# Create the machines
# This also waits for them to be made
pool = m.Pool(s.worker, pool_size)
########################################
# Now that we have the pool, put them to work
# Each will pull an item off of `data`, process it, and then keep
# doing that until the list is empty
# First part: sort the individual files
pool.run(sort_hour, data=hours)
# Second part: repartition
pool.run(repartition, data=groups)
finally:
pool.terminate()
print(f"Cost: ${pool.cost()}")

17
examples/servers.py Normal file
View file

@ -0,0 +1,17 @@
import minerva
import json
m = minerva.Minerva("hay-te")
pier = m.pier(subnet_id = "subnet-08438df942a357b21", # haystac-te-subnet-public1-us-east-1c
sg_groups = ["sg-005d1f7b02f1e4b06", # ssh
"sg-06f81d2d2d58dfc6b"], # default
iam = "Minerva",
key_pair = ("Ari-Brown-HAY-TE", "~/.ssh/Ari-Brown-HAY-TE.pem"))
def worker(num):
return pier.machine(instance_type = "r6a.2xlarge",
username = "ubuntu",
name = f"minerva-worker-{num}",
ami = "ami-0796c86095e0ac8fe",
disk_size = 512)