significant improvement to the readme and verification that all the examples work

This commit is contained in:
Ari Brown 2024-01-31 16:18:32 -05:00
parent e3c11fb1aa
commit 5dccce53e9
9 changed files with 275 additions and 109 deletions

View file

@ -1,5 +1,4 @@
from minerva.cluster import Cluster
from minerva.pier import Pier
import minerva
from minerva.timing import Timing
from dask.distributed import Client
import dask
@ -7,7 +6,7 @@ import dask
########### PREP ############################
def worker(pier, n):
mach = pier.machine(ami = "ami-01f85b935dc9f674c", # dask on ubuntu 22.04 x86
mach = pier.machine(ami = "ami-0399a4f70ca684620", # dask on ubuntu 22.04 x86
instance_type = "t3.medium",
username = "ubuntu",
name = f"dask-worker-{n}",
@ -17,24 +16,25 @@ def worker(pier, n):
return mach
def scheduler(pier):
mach = pier.machine(ami = "ami-01f85b935dc9f674c", # dask on ubuntu 22.04 x86
mach = pier.machine(ami = "ami-0399a4f70ca684620", # dask on ubuntu 22.04 x86
instance_type = "t3.medium",
username = "ubuntu",
disk_size = 32,
name = f"dask-scheduler",
variables = {"type": "scheduler"})
return mach
########## CLUSTER ##########################
pier = Pier("hay",
subnet_id = "subnet-05eb26d8649a093e1", # project-subnet-public1-us-east-1a
sg_groups = ["sg-0f9e555954e863954", # ssh
"sg-0b34a3f7398076545", # default
"sg-04cd2626d91ac093c"], # dask (8786, 8787)
key_pair = ("Ari-Brown-HAY", "~/.ssh/Ari-Brown-HAY.pem"),
iam = "S3+SSM+CloudWatch+ECR")
m = minerva.Minerva("hay")
pier = m.pier(subnet_id = "subnet-05eb26d8649a093e1", # project-subnet-public1-us-east-1a
sg_groups = ["sg-0f9e555954e863954", # ssh
"sg-0b34a3f7398076545", # default
"sg-04cd2626d91ac093c"], # dask (8786, 8787)
key_pair = ("Ari-Brown-HAY", "~/.ssh/Ari-Brown-HAY.pem"),
iam = "S3+SSM+CloudWatch+ECR")
cluster = Cluster(pier, scheduler, worker, num_workers=5)
cluster = pier.cluster(scheduler, worker, num_workers=2)
cluster.start()
########## USAGE ########################
@ -43,31 +43,9 @@ try:
client = Client(cluster.public_location)
print(client)
# Practice with a big array
# https://matthewrocklin.com/blog/work/2017/01/12/dask-dataframes
#import numpy as np
#import dask.array as da
import dask.dataframe as dd
import time
# https://stackoverflow.com/questions/43796774/loading-local-file-from-client-onto-dask-distributed-cluster
# Iteratively load files and scatter them to the cluster
#
# futures = []
# for fn in filenames:
# df = pd.read_csv(fn)
# future = client.scatter(df)
# futures.append(future)
#
# ddf = dd.from_delayed(futures, meta=df)
# query = athena.query("select * from trajectories")
# ddf = query.distribute_results(client)
with Timing("reading parquet"):
df = dd.read_parquet("s3://haystac-archive-phase1.trial1/ta1.kitware/ta1/simulation/train/")
athena = m.athena("s3://haystac-pmo-athena/")
query = athena.query("select * from trajectories.basline where agent < 100")
df = query.distribute_results(client)
with Timing("persisting"):
dp = df.persist()