improved run_cluster.py; touching up the dask test; upgrade pyarrow dependency for security patch

This commit is contained in:
Ari Brown 2023-11-28 11:12:40 -05:00
parent c6280a3826
commit 210e7ebd92
3 changed files with 99 additions and 40 deletions

View file

@ -2,64 +2,112 @@ import sys
import minerva
from minerva.timing import Timing
import dask
import dask.distributed
from dask.distributed import Client
import dask.dataframe as dd
import time
m = minerva.Minerva("hay")
print(f"connecting to {sys.argv[1]}")
client = Client(sys.argv[1])
#client = Client()
manifest_files = ['s3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_0934fdc9-1bc7-4dae-a371-c3f58f3b31fc',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_7011b49a-bf6c-42d0-9852-85aa10a3ad37',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_8ca98d70-74c2-4d17-b059-83cd25e398c0',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_61265893-e992-4026-8b69-e60a4641dd10',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_d4318a64-7fc0-4b59-8f85-8b1790e72a70',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_4e2e19a8-b360-49fe-9b82-f66a1e23ad3e',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_c5a77760-f078-432c-aaf5-6d99fb0cee0c',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_db5f90f3-9fc0-4b86-98da-d840bb9b5423',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_2472c560-1113-448b-ae18-e23032d3f3d8',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_551944ef-47f4-475d-a575-e209ca1ee7b4',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_67569166-18f9-40bd-9845-20f069f8dc8a',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_8a81dca0-767d-43bf-b0aa-a087f98d41c5',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_c9dd6a02-0f92-4202-ba70-77fda02d4acf',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_9f094026-03f4-4ec2-a348-0498eeb6b04d',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_2c20c942-1e2c-4f37-86ec-4adce83edbea',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_237d6c26-8372-4584-ae15-9f693d2295a6',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_cf41cbf5-eb46-4bb9-b904-f1518affbefa',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_420f8434-5a71-4af8-91b5-d5364c941ded',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_f155616d-39bc-483e-b19a-56da9fbae685',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_ef8a7770-43b7-44bb-9dde-f92ed8faae9b',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_8aa7de20-91ee-4ada-8f48-c7a5b313572f',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_7c265580-ada5-4b94-b818-5cebdb4bb6c6',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_13562caf-4578-4e36-83fe-8b7a5eabc7e8',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_b0f80cd3-4aa5-40ac-a0c8-632c763f8969',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_2f1e190b-621c-4638-91f1-e961ba674714',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_5dcd43e4-67bd-41ba-b3cd-7e8f8da9b1f9',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_293c6916-4f22-4ca0-a240-078ebe48368b',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_80e8c47e-f254-47c4-80af-d744885e8174',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_6b1ba112-0545-4c3f-9321-dbf597d98bc1',
's3://haystac-pmo-athena/results/0.12892323498922598/20231127_175506_00007_3735a_0b3dd1a8-72ef-4852-bf1d-f7091629d3b6']
def full_s3(obj):
return "s3://" + obj.bucket_name + "/" + obj.key
try:
# Practice with a big array
# https://matthewrocklin.com/blog/work/2017/01/12/dask-dataframes
#import numpy as np
#import dask.array as da
import dask.dataframe as dd
import time
# https://stackoverflow.com/questions/43796774/loading-local-file-from-client-onto-dask-distributed-cluster
athena = m.athena("s3://haystac-pmo-athena/")
records = 1_000_000_000
# Iteratively load files and scatter them to the cluster
with Timing("athena query"):
query = athena.execute("select * from trajectories.kitware limit 1000000", format='csv')
query.finish()
df = dd.read_csv(query.info_cache['ResultConfiguration']['OutputLocation'])
with Timing("read parquet from athena"):
# Delta Table
#files = m.s3.ls("s3://haystac-archive-phase1.trial1/ta1.kitware/ta1/simulation/train/")
#parqs = [full_s3(o) for o in files if o.key.endswith('.parquet')]
#query = athena.query("select * from trajectories.kitware limit 100000000")
# 20 partitions at a time, concat 20 at a time
#df = dd.read_parquet(parqs[0:20])#.astype({"agent": "category",
# # "timestamp": "datetime64[ns, UTC]"})
#for i in range(20, len(parqs), 20):
# new = dd.read_parquet(parqs[i:i + 20])#.astype({"agent": "category",
# # "timestamp": "datetime64[ns, UTC]"})
# df = df.concat(new)
# 20 partitions at a time, concat all at once
#df = dd.concat([dd.read_parquet(parqs[i:i + 20], engine='fastparquet') for i in range(0, len(parqs), 20)])
# All partitions at once
#df = dd.read_parquet(parqs, engine='fastparquet')
# Single CSV file
#query = athena.execute(f"select * from trajectories.kitware limit {records}", format="csv")
#query.finish()
#df = dd.read_csv(query.info_cache['ResultConfiguration']['OutputLocation'])
# Unload to Parquet files
#query = athena.query(f"select * from trajectories.kitware limit {records}")
#df = dd.read_parquet(query.manifest_files())
#df = query.distribute_results(client, size=10000)
df = dd.read_parquet(manifest_files)
print("distributed")
with Timing("partitioning"):
#df = df.categorize('agent')
#df['agent'] = df['agent'].cat.as_ordered()
#partitions = df.describe(include=['category']).compute().iloc[0][0]
#df = df.set_index('agent', npartitions=partitions)
divisions = list(range(0, 10001))
df = df.set_index('agent', divisions=divisions)
with Timing("persisting"):
dp = df.persist()
import IPython
IPython.embed()
#import IPython
#IPython.embed()
with Timing("count()"):
print(dp.count().visualize(filename='count.svg'))
print(dp.count().compute())
with Timing("mean latitude"):
print(dp.groupby(dp.index).latitude.mean().visualize(filename='latitude.svg'))
print(dp.groupby(dp.index).latitude.mean().compute())
with Timing("mean longitude"):
print(dp.groupby(dp.index).longitude.mean().visualize(filename='longitude.svg'))
with Timing("count()"):
print(dp.count().compute())
#with Timing("mean longitude"):
# print(dp.groupby(dp.index).longitude.mean().compute())
finally:
########## FIN #######################
print("closing client")
client.close()
print("end")
input()
#print("end")
#input()

View file

@ -18,7 +18,7 @@ minerva-console = "minerva.console:main"
[tool.poetry.dependencies]
python = ">3.9, <3.12"
boto3 = "^1.26.161"
pyarrow = "^12.0.1"
pyarrow = "^14.0.1"
joblib = "^1.1.0"
fabric = "^3.0.0"
s3fs = "2023.9.2"
s3fs = "2023.6.0"

View file

@ -4,9 +4,12 @@ from minerva.pier import Pier
########### PREP ############################
# modin base (built on dask base)
DASK_BASE = "ami-0a8b05658a4f00e52" # dask on ubuntu 22.04 x86
def worker(pier, n):
mach = pier.machine(ami = "ami-0a3df8365ed416816", # dask on ubuntu 22.04 x86
instance_type = "t3.medium",
mach = pier.machine(ami = DASK_BASE,
instance_type = "r5.xlarge",
username = "ubuntu",
name = f"dask-worker-{n}",
variables = {"type": "worker",
@ -15,8 +18,8 @@ def worker(pier, n):
return mach
def scheduler(pier):
mach = pier.machine(ami = "ami-0a3df8365ed416816", # dask on ubuntu 22.04 x86
instance_type = "t3.medium",
mach = pier.machine(ami = DASK_BASE,
instance_type = "r5.xlarge",
username = "ubuntu",
name = f"dask-scheduler",
variables = {"type": "scheduler"},
@ -35,9 +38,17 @@ pier = m.pier(subnet_id = "subnet-05eb26d8649a093e1", # project-subnet-public
cluster = pier.cluster(scheduler, worker, num_workers=int(sys.argv[1]))
cluster.start()
print(cluster.public_location)
print("press enter to terminate cluster")
input()
print()
print(f"dashboard: http://{cluster.scheduler.public_ip}:8787/")
print(f"cluster: {cluster.public_location}")
print()
print("type `exit()` to terminate the cluster")
print()
import IPython
IPython.embed()
cluster.terminate()